科研成果
获奖成果
论文
专著
专利
现在位置:首页 > 科研成果 > 论文
论文
论文编号:
论文题目: Differentiated Demographic Histories and Local Adaptations between Sherpas and Tibetans
作者: Zhang C, Lu Y, Feng Q, Wang X, Lou H, Liu J, Ning Z, Yuan K, Wang Y, Zhou Y, Deng L, Liu L, Yang Y, Li S, Ma L, Zhang Z, Jin L, Su B, Kang L, Xu S
联系作者:
外单位作者单位:
发表年度: 2017
卷: 18
期: 1
页码: 115
摘要:

BACKGROUND:

The genetic relationships reported by recent studies between Sherpas and Tibetans are controversial. To gain insights into the population history and the genetic basis of high-altitude adaptation of the two groups, we analyzed genome-wide data in 111 Sherpas (Tibet and Nepal) and 177 Tibetans (Tibet and Qinghai), together with available data from present-day human populations.

RESULTS:

Sherpas and Tibetans show considerable genetic differences and can be distinguished as two distinct groups, even though the divergence between them (~3200-11,300 years ago) is much later than that between Han Chinese and either of the two groups (~6200-16,000 years ago). Sub-population structures exist in both Sherpas and Tibetans, corresponding to geographical or linguistic groups. Differentiation of genetic variants between Sherpas and Tibetans associated with adaptation to either high-altitude or ultraviolet radiation were identified and validated by genotyping additional Sherpa and Tibetan samples.

CONCLUSIONS:

Our analyses indicate that both Sherpas and Tibetans are admixed populations, but the findings do not support the previous hypothesis that Tibetans derive their ancestry from Sherpas and Han Chinese. Compared to Tibetans, Sherpas show higher levels of South Asian ancestry, while Tibetans show higher levels of East Asian and Central Asian/Siberian ancestry. We propose a new model to elucidate the differentiated demographic histories and local adaptations of Sherpas and Tibetans

刊物名称: Genome Biology
论文出处: https://genomebiology.biomedcentral.com/articles?query=Differentiated+demographic+histories+and+local+adaptations+between+Sherpas+and+Tibetans&searchType=journalSearch&tab=keyword
影响因子: 11.908(2016年)